DIGITAQlU LOGIC
RTL & VeriLoG

Interview Questions

A Practical Study Guide
for Design Engineers

veritocCcobe.com

VerilogCode.com

Copyright © 2015 by VerilogCode.com

All rights reserved. This book or any portion thereof

may not be reproduced or used in any manner whatsoever
without the express written permission of the publisher
except for the use of brief quotations in a book review.

Ordering Information:
Quantity sales. Special discounts are available on quantity purchases by corporations,

associations, and others. Orders by U.S. trade bookstores and wholesalers, please visit:

www.VerilogCode.com

Printed in the United States of America

First Printing, May 2015

Revision 1.0

ISBN-13: 978-1512021462

ISBN-10: 1512021466

www.VerilogCode.com

For permission requests, contact VerilogCode.com

VerilogCode.com Page

DIGITAQlU LOGIC
RTL & VeriLoG

Interview Questions

=T D=
__\L_R Carry
S | /— o

A Practical Study Guide

for Design Engineers

veritocCcobe.com

VerilogCode.com

VerilogCode.com

DIGITAQlU LOGIC
RTL & VeriLoG

Interview Questions

About the Author:

Trey Johnson has been designing digital logic circuits and writing
RTL code in both Verilog and VHDL languages for almost twenty years.

In the late 1990’s, Johnson designed and developed some of the
first multimedia hardware components used inside early smartphones,
with his primary design focus in video and graphical subsystems, LCD and
camera subsystems, and 2D hardware accelerators. He has worked
closely and designed hardware components for both ARM and DSP
processors and cache subsystems. He also has experience designing I/O
peripherals such as resistive touch screen displays, magnetic card
readers, PCl Express controllers and SerDes subsystems, and memory
controllers.

Johnson has been granted three United States Patents for his
digital design solutions. He is the founder of VerilogCode.com which is a
website dedicated to sharing information about Verilog and RTL design.

Please visit the website for more digital design and job interview
questions and to also share your own experiences.

VerilogCode.com Page 5

VerilogCode.com

This book is dedicated to Brandi, Tucker, Gunner and Alexa

Thank you for riding with me on life’s waves of change,

...and for embracing the journey along the way.

VerilogCode.com Page 7

VerilogCode.com

Table of Contents

Introduction............oooiiiiiii i 17
RTL Verilog Syntax Questionscoeivveinennnn. 19
RTL Logic Design Questionsc.oeeveiiuenennnns 29
Clock Dividers, Clock Gating, and Reset Questions.... 49
Clock Domain Crossing Questions 59
Power Related Design Questions 65
Digital Logic QUeStionsccevviiiiiiiiiinnnnnnnn. 71
Logical Thinking Questionsc..ccooviiiiiiiennn, 93
Answers to Logical Questions...................oovinnnen. 99
Further Reading and Studying on Your Own.............. 103
Personal Interview Notes and Questions................... 105
Credit and SOUICeS.........cvviiiiiiiiiiiiiiiienaen, 119
VerilogCode.com Page ©

VerilogCode.com

‘0

D

[SEN
(=]

List of Questions

RTL Verilog Syntax Questions

1
2
3
4
5
6.
7
8
9.
1

0.

. Explain blocking versus non-blocking statements

Show Verilog code for bitwise versus conditional operators

. Verilog code for logic gates: and, or, nand, nor, xor, xnor
. Verilog code for bitwise reduction
. Verilog code multiplying and dividing by powers of 2

Verilog code for sign extension and concatenation

. Write Verilog Code for asynchronous and synchronous Flip Flops
. Verilog coding - what are three ways to code a mux

What type of circuit would the synthesis tool create for mux code
Verilog code for latch versus flip flop and draw timing diagram

RTL Logic Design Questions

11

21

. Design a circuit to detect if a signal transitions in any direction
12.
13.
14.
15.
16.
17.
18.
19.
20.
. Design a circuit to find the maximum and second highest number
22.
23.
24.

Design a circuit to detect a 1 cycle high pulse (synchronously)
Design a sequence detector circuit to detect 1,0,1,1,0 using FSM
Verilog code to detect a pattern 10110 anywhere in last 8 samples
For the timing diagram show, write Verilog code to create it
Design a debounce circuit to remove input glitches

Write Verilog code to convert BCD to gray code

Design a synchronous fifo module using dual port RAM

Design a circuit to detect if number is divisible by three

Design a circuit to calculate Fibonacci sequence

Design a circuit to output second, minute, and hour from Ims input
Given the timing diagram, write the equivalent Verilog code
Draw the structure of a digital FIR filter with 5-taps

Clock Dividers, Clock Gating, and Reset Questions

25.
26.
27.
28.
29.
30.

Design a clock divide by 2 circuit

Design a clock divide by 3 circuit (with 50 percent duty cycle)
Design a clock divider by N circuit (with 50 percent duty cycle)
Design a glitch free clock gating cell with enable pin

How to detect a rising edge of an input signal if clocks are off
Design a reset circuit with async assertion and sync deassertion

VerilogCode.com Page 1l

Clock Domain Crossing Questions

31.
32.
33.
34.
35.

What is metastability?

Design a circuit from a slow clock domain to a fast clock domain
Design a circuit to handle CDC from fast domain to a slow domain
How would the circuit change if you need to synchronize a bus?
Gray coding techniques to cross clock domains

Power Related Questions

36.
37.
38.
39.

Describe two components of power
Describe how to reduce static power
Describe how to reduce Dynamic power
Describe low power RTL coding techniques

Refresher: Digital Logic Questions

40.
41

42.
43.
44.
45.
46.
47.
48.
49.
50.
51.

What is definition of setup and hold time for a flip flop

. Venn Diagram and Boolean Logic

Logic Gate Design - Transistor Level

Cross Section of a transistor — understand the process node
Karnaugh Maps (clk divide by 3 circuit not 50-50 duty cycle)

Half Adder using XOR gates for addition and AND gate for carry
Using only 2 input muxes, create a nand, nor, inverter, or, and, xor
How to use and XOR gate like a controlled inverter?

Design an inverter, and , or, and xor gate using just nand gates
Create 4:1 mux using 2:1 mux

What is the fastest frequency this circuit can run?

Convert this decimal value to binary, hex, and octal format

Logical Thinking Questions

52.
53.
54.
55.
56.

Four Gallons of Water
The Path to Freedom
Three Light Switches
Multiplication Question
Einstein’s Riddle

VerilogCode.com Page 12

List of Figures

A AUl

—_
=)

11

21

31

Blocking Statements and Equivalent Gates (Fig. 1)
Non-blocking Statements and Equivalent Gates (Fig. 2)
Timing Diagram - capture with latch and flip flop (Fig.3)
Latch vs. Flip Flop timing diagram (Fig. 4)

Equivalent Gates from RTL code in Ex. 11 (Fig. 5)
Timing Diagram for Edge Detection using clocks (Fig. 6)
Sequence Detector using FSM (Fig. 7)

Decoder Circuit - Shift Register and Combinatorial Logic (Fig. 8)
Write the Verilog code to produce the above waveform (Fig. 9)

. Classic Synchronizer Circuit using 2 Flip Flops (Fig. 10)

. Circuit to detect low to high transition (Fig. 11)
12.
13.
14.
15.
16.
17.
18.
19.
20.
. Classic 2-Stage Synchronizer (Fig. 21)
22.
23.
24.
25.
26.
27.
28.
29.
30.
. Six state FSM with correct gray code values (Fig. 31)
32.
33.
34.
35.
36.
37.

BCD to Gray Code (Fig. 12)

Circuit to Generate Fibonacci Series (Fig. 13)

Write Verilog Code to Produce this Timing Diagram (Fig. 14)
5-TAP Digital FIR filter (Fig. 15)

Timing Diagram for Clock Divide by 3 (Fig. 16)

Timing Diagram for Clock Divide by 3 (50-50 duty cycle) (Fig.17)
Timing Diagram for Clock Divide by 4 (50-50 duty cycle) (Fig.18)
Timing Diagram for Clock Divide by 5 (50-50 duty cycle) (Fig.19)
Latched Based Clock Gating Circuit (Fig. 20)

Clock Domain Crossing using Full Handshaking (Fig. 22)
Synchronize Bus Across Clock Domains Full Handshake (Fig. 23)
Example of Critical Path in Sequential Circuit (Fig. 24)

Venn Diagram (Fig. 25)

Logic Gates for A&(B|C) (Fig. 26)

Cross-section of CMOS Transistor (Fig. 27)

3 State FSM for Clock Divider (Fig. 28)

Gray coding (with violation from state 11 to state 00) (Fig. 29)
2-bit FSM (illegal gray code transition) (Fig. 30)

Equivalent Gates Result and Carry (Fig. 32)

Full Adder Circuit (Fig. 33)

Multibit Adder (Fig. 34)

Inverter (Fig. 35)

AND Gate Implemented with NAND Gates (Fig. 36)
OR Gate Implemented with NAND Gates (Fig. 37)

VerilogCode.com Dage 12

38
39
40
41

List

A e R

—_— —
—_ O

NN \S T (S I \O TN \S I \S T NS T \S I S I L a e e e e
0 3 N N kWD~ O O 0N NN

. XOR Gate Implemented with NAND Gates (Fig. 38)

. 4:1 Mux created with 2:1 muxes (Fig. 39)

. 4:1 mux implemented with combinatorial logic (Fig. 40)

. What is maximum frequency this circuit can run? (Fig. 41)

of Verilog Coding Examples

Operator: & versus && (Ex. 1)
Operator: | versus || (Ex.2)
Operator: ~ versus ! (Ex. 3)
Bitwise Operators (Ex. 4)
Bitwise Reduction (Ex. 5)
Shift Operations (Ex. 6)
Concatenation Operations (Ex. 7)
Verilog coding styles for a 4:1 mux (Ex. 8§)
Priority Encoder (Ex. 9)
. Parallel Muxing Scheme using full case statement (Ex. 10)
. Verilog code for Latch and Flip Flop (Ex. 11)
. Verilog Code for Edge Detection (Ex. 12)
. Circuit to detect pulse (Ex. 13)
. Example Verilog Code for Fig. 9 waveform (Ex. 14)
. Verilog Code for 3-bit Gray Code (Ex. 15)
. Verilog code to convert BCD to Gray Code (Ex. 16)
. FIFO control logic (Ex. 17)
. FSM states for divisible by 3 circuit (Ex. 18)
. Verilog code for Fibonacci Generation (Ex. 19)
. Verilog code to generate one second, minute, and hour (Ex. 20)
. Verilog Code for Fig. /4 Timing Diagram (Ex. 21)
. Verilog Code for Clock Divide by 2 (Ex. 22)
. Verilog Code for Clock Divide by 3 with 50-50 duty cycle (Ex.23)
. Example Verilog Code for Generic Clock Divide by N (Ex. 24)
. Example Verilog Code for Glitch Free Clock Gate (Ex. 25)
. Asynchronous Edge Detection Circuit with no clocks (Ex. 26)
. Verilog code for Reset synchronization (Ex. 27)
. Start/Stop Conditions for Counters (Ex. 28)

VerilogCode.com Page 14

List of Tables

NN RPN

—t e ek e e e e e e \©
O ON N kW — O

Asynchronous versus Synchronous Flip Flops (Table 1)
Inverter Gate, Truth Table, and transistor-level circuit (Table 2)
NAND Gate, Truth Table, and transistor-level circuit (Table 3)
NOR Gate, Truth Table, and transistor-level circuit (Table 4)
AND Gate, Truth Table, and transistor-level circuit (Table 5)
OR Gate, Truth Table, and transistor-level circuit (Table 6)
Semiconductor Manufacturing Processing Nodes (7Table 7)
Truth Table for an Adder (Table 8)

Inverter Implemented with 2:1 mux (7able 9)

. AND Gate Implemented with 2:1 mux (Table 10)

. OR Gate Implemented with 2:1 mux (Table 11)

. NAND Gate Implemented with 2:1 mux and inverter (7able 12)
. NOR Gate Implemented with 2:1 mux and inverter (7able 13)

. XOR Gate Implemented with 2:1 mux and inverter (Table 14)

. XNOR Gate Implemented with 2:1 mux and inverter (Table 15)
. XOR Gate Used as Controlled Inverter (Table 16)

. Path to Freedom Doors (Table 17)

. Multiply Question (Table 18)

VerilogCode.com Pageits

VerilogCode.com

‘0

D

Y
(9)]

Introduction

I’'m 30,000 feet above the ground, on a plane headed to San Diego
for a job interview. I’m a little anxious, and I take some comfort in
looking out of the small window pane next to me. My eyes wander back
down to the magazine article sitting on my lap, then I read these words:

“Transitions. That’s all life is, and it’s tougher than physics.
From school to work to retirement to dead”.

The magazine article is about children who are interviewing for
preschool, and the most important characteristic that the administrators
look for is how well can the child adapt to change with new surroundings
and new rules. But this article could have been written about me: an
engineer who spent eighteen years working for the same company, and
one day was suddenly let go as a result of a corporate downsizing. I am
now the one who must adapt to change, new surroundings, and new rules.

This book documents real interview questions that I encountered
from my own personal job interviewing experiences with some of the
top-tier semiconductor companies in the world. This book also contains
fundamental digital design material and practical Verilog code examples
that I created based on the themes from the types of questions that I
experienced first hand. This book will help prepare you for your own
interviewing process. It is by no means the end-all, but rather, consider
this book as a great starting point. As you read through some of the
questions, I will also share with you some of my personal insight and
knowledge in the Author’s Tips section, which I have acquired through my
career as a digital logic professional.

Interviewing for a job is like going on a date; at first you may feel

a little nervous or awkward, but after some time and more interviews you
soon become more comfortable and confident. Do not get discouraged in

VerilogCode.com Page 17

the beginning! The job interviewing experience can be daunting. It will
test your mental toughness. I experienced headaches during my first few
interviews because of the long hours of mental stress. But the saying is
true that practice makes perfect. After several more interview attempts, |
became more comfortable, developed a sense of calmness, and felt more
prepared to answer the questions.

I’ve encountered many different types of interview questions
ranging from real world practical examples, to academic textbook or
theoretical questions (usually asked by people with PHDs with not much
practical experience), to tricky questions using some obscure circuit
(which would never be applicable in the real world), to behavioral
questions (usually asked by Human Resource representatives). This
book focuses on real world practical examples, and it also discusses some
of the tricky and obscure questions that are asked. Preparing for
behavioral questions is important and is covered on our website.

This book is divided into multiple sections covering the following
topics: RTL Verilog coding syntax, RTL Logic Design (including low
power RTL design principles), clocking and reset circuits, clock domain
crossing questions, digital design fundamentals, and logical thinking
questions. Each section is unrelated to the other so you can jump around
to any section or question that interests you.

This book is a great starting place for you to begin preparing for
your job interview. This book provides you with a broad range of
information and covers many topics. By the end of this book, you will
have more knowledge and insight into the types of digital design interview
questions being asked in the field of semiconductor digital design.

Remember that life will always bring about change, and it’s how
well you can transition and adapt that is important. Have a strong and
positive attitude and you will succeed!

Good luck on your new journey!

VerilogCode.com Dage 18

RTL Verilog Syntax Questions

VerilogCode.com Dage 10

VerilogCode.com

‘0

D

ro
[\»)

1. What is the difference between blocking and
non-block statements, and when are they used?

Blocking statements are coded in Verilog with the = operator, and
are used when creating combinatorial logic. This operator blocks the
simulator from executing subsequent statements until the current
evaluation and assignment is done. Consider the following code (E is
assigned the immediate new value of C):

i assighnC=B & A;

T‘—} assignE=C| D;
>

D E
>

Blocking Statements and Equivalent Gates (Fig. /)

Non-blocking statements are coded in Verilog with <= operator,
are always used when coding flip flops inside a clocked process. The
assignment is postponed until all the subsequent statements are evaluated.
This allows for parallel or concurrent execution of statements. In this
example, E is assigned the previous value of C (not the immediate):

always @(posedge clk) begin
C==B & A; //parallel statement
E<=C | D; //parallel statement
end

Dol

rr
‘m

Non-blocking Statements and Equivalent Gates (Fig. 2)

VerilogCode.com Page 21

2. Explain the difference between logical and bitwise
operators

In Verilog, you should understand the different syntax used for
writing conditional if statement operations compared to writing code for
creating logical gates with bitwise operations.

For bitwise operations resulting in an AND gate, use the & operator
assign C = A & B; //This will create an and gate

For conditional and if statements, use the && operator
if (condl ==1’b1 && cond2 == 1’b1) {...}

Operator: & versus && (Ex. 1)

For bitwise operations resulting in an OR gate, use the | operator
assign C=A | B; //This will create an or gate

For conditional or if statements , use the || operator
if (cond1l ==1'b1 || cond2 == 1'b1){...}

Operator: | versus || (Ex.2)

For bitwise operations resulting in inverter gate, use the ~ operator
assign A = ~B; //This will create an inverter

For conditional not if statements, use the !
if (Icondl) { ...}

Operator: ~ versus ! (Ex. 3)

VerilogCode.com Page 22

3. Write code for logic gates: and, or, xor, nand, nor,
xnor

assighC= (A&B); //AND gate
assignC= (A | B); //OR gate
assignC= (A™ B); //XOR gate
assign C=~(A &B); //NAND gate
assign C="~(A | B); //NOR gate
assign C="~(A " B); //XNOR gate

Bitwise Operators (Ex. 4)

4. How can you bitwise reduce a multibit signal?

wire [15:0] databus;
wire all_ones_detected;
wire is_databus_odd;
wire signal_not_zero;

assign all_ones_detected = &databus; // AND all the bits together;
assign is_databus_odd = ~databus; // XOR all the bits together;
assign signal_not_zero = |databus; // OR all the bits together;

Bitwise Reduction (Ex. 5)

5. What code multiplies or divides by powers of 2?

assign C = A << 2; // shift left (multiply by 4)
assign C = A >> 3; // shift right (division by 8)

Shift Operations (Ex. 6)

6. How would you perform sign extension?

reg [4:0] A;
wire [9:0] C;
assign C = { {5{A[4]}} ,A}; // sign extension

Concatenation Operations (Ex. 7)

VerilogCode.com Page

7. What are three ways to code a 4:1 mux in Verilog?

Assume the 4:1 mux inputs are named ‘A, B, C, D’, you will need
a 2-bit select line (to choose between 4 inputs) and have a 1-bit output:

Coding Style 1:

assign output = (select ==2'b00) ? A :
(select==2'b01) ? B :
(select ==2"b10) ? C: D;

Coding Style 2:

always @(*)

if (select == 2’b00)
output <= A;

else if (select == 2'b01)
output <= B;

else if (select == 2’b10)
output <=C;

else
output <= D;

Coding Style 3:
always @(*)
case (select):
2’b00: output <=A;
2’b01: output <=B;
2’b10: output <=C;
2’b11: output <= D;
end case;

Verilog coding styles for a 4:1 mux (Ex. §)

You could also instantiate a mux cell directly if it exists in your library.

VerilogCode.com Page 24

8. What circuit would synthesis create for previous

mux coding styles?

Coding Styles 1 and 2 are equivalent circuits but use different

coding styles, and both produce a priority encoder (path A is highest)

Style 1:

assign output = (select == 2'b00) ? A :
(select ==2'b01) ? B :
(select ==2"b10) ? C:

Synthesis Results
(Priority Encoder)

case (select):
2’b00: output <= A;
2’b01: output <= B;
2’b10: output <=C;
2’b11: output <= D;
end case;

D; | select
—[decode J
Style 2:
always @(*) D —
if (select == 2’b00) C —
output <= A; B A
else if (select == 2’b01)
output <= B;
else if (select == 2'b10)
output <=C;
else
output <= D;
Priority Encoder (Ex. 9)
Style 3)
always @(*) SY”thESlS R&SUItS

(Parallel Case Mux)
select

oOw>X>
L[]

Parallel Muxing Scheme using full case statement (Ex. /0)

VerilogCode.com

Poge 25

C

9. Write Code for Asynchronous/Synchronous Flip
Flops and discuss the pros and cons of each

Asynchronous Synchronous
always @(posedge clk or always @(posedge clk)
negedge rst) If (rst)

Verilog If (Irst) Q<=#11'b0;
Code Q<=#11'b0; else
else Q<=#1D;
Q<=#1D;
rst

4 rst

D4 aqr D:D' Q-
Schematic
1 1
clk clk
Pros No need for clocks to be running No need to worry .about
asynchronous timing
Any glitch on reset signal will
resct flops ([Fthere ate cr0s5 | Neag g gane both the
Cons clock dothain paths, then you assertion of reset and

need to synchronize the reset to
each clock domain). Need to
time the removal of reset

also deassertion of reset

Asynchronous versus Synchronous Flip Flops (7Table 1)

Author’s Tip: The questions so far has focused on Verilog syntax.
Basic syntax questions can easily be looked up on Google (after you
have a job), however, on a job interview it’s important to be prepared
for these questions and knock them out of the park.

VerilogCode.com Page 26

10. Write Verilog to capture input below with a latch
and a flip flop, and draw the timing outputs of each.

Clock] 1‘—| +—| L
input f "/ \ AN L

Timing Diagram - capture input into a latch and flip flop (Fig. 3)

//purposely coding latch
always @(clk or input)
if (clk == 1'b1)
Q_latch <=input;

//flip flop coding a Latch
always @(posedge clk)
Q_flop <= #1 input;

Verilog code for Latch and Flip Flop (Ex. /1)

The outputs of the latch and flip flop is below in the timing diagram:

Clogk f : I f 2 | f : 4 : |_+—l
input S AN B AN A RN

a_flop /SN SN
@_tatch SN VAN 7\

Latch vs. Flip Flop timing diagram (Fig. 4)

The output of the flip flop only changes on the rising edge of clock, and
will equal the value of the input captured at the rising edge of clock. The
latch output will follow the input signal while the latch is open (in this
case while clock is high). When the latch closes (clock is low), the output
holds its previous value.

VerilogCode.com Page 27

VerilogCode.com

‘0

D

e
[Se]

RTL Logic Design Questions

VerilogCode.com Dage 29

VerilogCode.com

‘0

D

(48]
=]

11. Design a circuit that can detect if an input signal
transitions in either direction. Draw a timing diagram.

For this answer let’s assume there is a clock available, and also the
input signal D is on the same clock domain as our circuit. As with all
interview questions, you should state your assumptions before answering
the questions or confirm with the interviewer so you are both on the same
page.

The easiest way to detect if an input signal has changed it simply
compare current signal at time T to the previous version of the signal at
time t-1. Therefore, a flip flop is used to capture the signal, and then you
can compare it to the previous version of the same signal:

//capture the signal to have a delayed version
always @ (posedge clk or negedge reset)
if (~reset)
Q<=#11'b0;
else
Q<=#1D;

//detect signal transitions

assign Toggle = (Q A D) ; //xor gate

assign Falling=~D & Q; / /D is low, but was high
assign Rising = D & ~Q; // D is high, but was low

Verilog Code for Edge Detection (Ex. 12)

\
0 a 1 . JD— Toggle
' Falling
Fi
Jﬁ_.;} Rising

Equivalent Gates from RTL code in Ex. 11 (Fig. 5)

VerilogCode.com Page 21

The timing diagram is shown below. This waveform was drawn
with tool called TimeGen, downloaded from XFusionSoftware.com:

Ciock e s L L1

(]

a

Rising

Falliing

Taggle

Timing Diagram for Edge Detection using clocks (Fig. 6)

12. Design a circuit to detect a 1 cycle pulse input

Using delay states to remember the state of the signal for previous two
cycles, you can simple check for 0, 1, then 0. You could also use an FSM.

//capture the signal and delay 2 cycles

always @ (posedge clk or negedge reset)
if (~reset) begin

Q1 <=#11'b0;

Q2 <=#1 1'b0;
end

else begin

Ql<=#1D; //delay T-1

Q2 <=#1Q1; //delay T-2

end;

assign pulse_high=~D & Q1 & ~Q2;

Circuit to detect pulse (Ex. 13)

VerilogCode.com Daca 2)

o= o~

13. Design a sequence detector for the pattern: 10110

One method is to design a FSM to detect the sequence. If the FSM
reaches state 5, then generate a valid output pulse (all the other states will
output low). It’s also important to make sure you go back to correct state
if the wrong value comes in (you don’t always need to go back to idle
state). You need to check if some of the sequence has already started and
go back to the appropriate state.

FSM
1,0,1,1,0

Sequence Detector using FSM (Fig. 7)

VerilogCode.com Page 23

14. Detect if pattern 10110 appears in the last 5 inputs

To detect a pattern, we just need to design a decoder circuit. You
could use shift registers and then add combinatorial logic to decode the
string to check for a match. Whenever the values match, a pulse is
generated. Be sure to clarify with the interviewer if the circuit needs to
start over if the sequence is wrong (or if they want you to just detect
anytime the pattern appears). If you need to detect the sequence, then you
will need a state machine in the previous example.

The method below requires N number of shift registers to hold the
length of the string or the sample window. Also, this circuit will always
output true if the string matches.

External Input

]

o
[
=

CLK

Decoder Circuit - Shift Register and Combinatorial Logic (Fig. 8)

Author’s Tip: Be sure to understand if the interview question requires
a FSM or a simple decode. Also, how would you work the above
example if the question changed to detect the pattern in the last 8
samples? The answer is to use a 8 bit shift register, and then decode for
the appropriate sequence after output of each stage. Then you will
need to logically or the outputs of each stage

VerilogCode.com Page 24

15. Given the timing diagram, write the Verilog code to
produce the Start signal and the chip selects:

1 2 3 4 5 B 7 a 9 10
CS1
Cs2
Cs3

Write the Verilog code to produce the above waveform (Fig. 9)

//generate a counter to 3 (used to create start pulse)
always @(posedge clk or negedge rst)
if (Irst)
counter <= 2’b00;
else if (counter == 2’b10)
counter <= 2’b00;
else
counter <= counter + 1'b1;

assign start = (counter == 2’b01) ? 1’b1 : 1’b0; // start pulse

always @(posedge clk or negedge rst)
if (!rst)
cs <= 3’b000;
else if (start == 1’b1)
begin
case (cs):
3’b000: cs <= 3'b001;
3’b001: cs <=3'b010;
3’b010: cs <=3'b100;
3’b100: cs <= 3'b000;
default: cs <= 3’b000;
endcase
end

assign CS1 = cs[0]; assign CS2 = cs[1]; assign CS3 = cs[2];

Example Verilog Code for above waveform (Ex. /4)

VerilogCode.com Page 25

16. Design a debounce circuit which removes glitches,
with the following assumptions:

1) Assume the input signal is driven from an asynchronous clock.

2) Generate a pulse when the signal transitions from low-to-high.

3) The circuit should filter out any noise or glitches on the input
signal. The input signal must be valid high for at least 2 clocks

Since the question said to assume the external input signal is driven from
an asynchronous clock, the circuit we need to design must use a
synchronizer on the input.

External Input
— al Q2

CLK

Classic Synchronizer Circuit using 2 Flip Flops (Fig. 10)

After the synchronizers, the signal must be delayed two more
cycles so we can check that is is still valid, and to also detect a rising edge.

™
R.):l:\ pulse
A
!_ D2

External Input

e ! Q2 ——)b1

CLK

Circuit to detect low to high transition (Fig. /1)

VerilogCode.com Dage 26

17. Write Verilog Code to generate a Gray Code counter

A valid question for a digital designer is to write RTL code to
generate gray code. [’ve seen two ways to accomplish this. The first
method is straightforward code without any tricks. The second method is
a quicker method and something you should be aware to translate binary
counter to gray code counter.

Below is RTL code written to generate a 3-bit gray code counter:

always @(posedge clk or negedge rst)
if (!rst)
counter <= #1 3°b000;
else
counter <= #1 counter + 1;
end

always (@(counter)

case (counter):
3’b000 : gray output <= 3’b000;
3’b001 : gray output <=3’b001;
3’b010: gray output <=3’b011;
3’b011: gray output <=3’b010;
3’b100: gray output <=3’b110;
3’b101 : gray output <=3’bll1;
3’b110: gray output <=3’b101;
3°bl11: gray output <=3’b100;
default: gray output <=3’b000;

end case;

Verilog Code for 3-bit Gray Code (Ex. 15)

One logical solution would be to create a 3-bit register and use it as
binary counter that is incremented by 1 each clock cycle. A signal
named “gray_output” decodes the binary counter and then generates the
new gray code output. The problem with this approach is for a N-bit

VerilogCode.com Page 27

counter you need to explicitly decode rite each state. A better, more
generic solution using an XOR gate is presented below:

BCD Gray Code
0000 0000
ot o BCD[3 GI3
0010 0011 [3] [3]
0011 0010 BCD[2] _ D G[2]
0100 0110 D"
0101 0111 BCD[1] G[1]
0110 0101 D"‘

G[0
0111 0100 BCDI[O] [0]
1000 1100
1111 1000

BCD to Gray Code (Fig. 12)

always @(posedge clk or negedge rst)
if (!rst)
bed counter <= #1 4°b0000;
else
bed counter <= #1 bed _counter + 1; // binary counter
end

//convert binary to gray code

assign gray code = { bed counter[3],
bed counter[3] A bed counter[2],
bed counter[2] ” bed counter|[1],
bed counter[1] ~ bed counter[0]}

Verilog code to convert BCD to Gray Code (Ex. 16)

Author’s Tip: I was asked some variation of a gray coding question on
80% of my interviews. It is important in today’s low power design (
since only 1 bit toggles saving dynamic power). Also, gray coding can
be used to send a multi-bit vector across clock domains (after classic
double synchronization).

VerilogCode.com Dage 28

18. Design a FIFO module that pushes and pops data
using a dual port RAM. The FIFO logic should generate
a fifo full signal and a fifo empty signal. (Assume both
sides of FIFO are synchronous for write and read inputs)

Dual Port RAM datasheet

Inputs/Outputs: (inputs clk, rst, write, write_address, write_data,
read_address; output read_data);

Description: : A dual port RAM allows both writes and reads to occur
simultaneously to different address locations by using separate write
and read address ports.

Writes: When the write signal is asserted high, data on the write_data
bus is written into location pointed to by write_adresss.

Reads: The read address points to a location to retrieve the data on
put onto the read_data bus.

Width x Depth: The RAM can store 256 entries

The code is listed below which generates the FIFO control logic:

module FIFO
input wire clk, rst, push, data_in, pop, data_in;
outputs fifio_full, fifo_empty, data_out);

reg[7:0] write_address;
reg[7:0] read_address;
reg[7:0] fifo_count;

//generate internal write address
always @(posedge clk or negedge rst)
if (!rst)
write_address <= #1 8’b0000_0000; //256 locations
else if (push == 1'b1)
write_address <= #1 write_address +1’b1;

//generate internal read address pointer
always @(posedge clk or negedge rst)
if (Irst)

VerilogCode.com Dage 29

read_address <= #1 8’b0000_0000; //256 locations
else if (pop == 1’b1)
read_address <= #1 read_address +1'b1;

//generate FIFO count
// increment on push, decrement on pop
always @(posedge clk or negedge rst)
if (!rst)
fifo_count <= #1 8’b0000_0000; //256 locations
else if (push == 1’'b1 && pop == 1’b0)
fifo_count <= #1 ffio_count +1;
else if (push == 1’b0 && pop == 1'b1)
fifo_count <= #1 ffio_count - 1;

//generate FIFO signals
assign fifo_full = (fifo_count==8'b1111_1111) ? 1’b1: 1’b0;
assign fifo_empty = (fifo_count==8'b1111_1111) ? 1’b1: 1’b0;

//Connect RAM

i_ram RAM (.clk (clk), .rst(rst), .write(push),
.write_address(write_address), .write_data(data_in), .read_address
(read_address), .read_data(data_out));

FIFO control logic (Ex. 17)

Author’s Tip: Note this solution presented uses a fifo count register
(which adds another 8 registers) . Another method which saves area is
to extend the write and read address pointers by 1 extra bit. When the
pointers are equal, the fifo is empty. When the MSBs are different,
but remaining bits[7:0] are equal, the fifo is full.

Also note that if this question used asynchronous clock domains, the
circuit would need to synchronize any signals that cross domains such
as fifo full or empty. But when you pass these signals across domains,
the synchronization causes an extra delay (due to the sync flop) which
would lead to overflows and underflows. To solve this, you can use
gray coded write and read address pointers. The gray coded address
pointers are then synchronized into the opposite clock domains, and
then synchronously generates fifo_full and fifo_empty.

VerilogCode.com Page A0

19. Design a circuit to detect if a number is divisible by
3. The input to the circuit will be a single bit (either 0
or 1). Assume each input bit will be shifted into the
LSB location. The output of the circuit should be 1 if
the binary number received so far is divisible by 3.

The trick to this is to divide the binary number by 3 and then check
the modulo value. The maximum number of states we could have based
on the modulo results is just 3 (mod 0, mod 1, or mod 2).

Our FSM will start in state 0 which represents that the number is
divisible by 3. If the module is 1, then we go to state 1. If modulo is 0,
we go back to state 0 (and generate div_by 3 high). Each state represents
the module value. For this example, let’s assume the first input bit is
0, then 1, 1,0,1,0,0,1:

binary num Div by 37 State

0 i=1= mod 0

N1 no mod 1

n11 1= mod 0

0110 Pi=1= mod 0
01101 no mod 1
011010 no mod 2
0110100 no mod 1
01101001 Pi=1= mod 0

assign div_ by 3 = (fsm == mod _0) ? 1'b1: 1'b0;

FSM states for divisible by 3 circuit (Ex. /8)

Author’s Tip: You should practice other divisible values such as 4 or 5

VerilogCode.com Page Al

20. Design a circuit to generate the Fibonacci series.
The circuit should have an enable signal which allows
the circuit to operate. When enable is low, the circuit
should not advance to the next number.

By definition, the first two numbers in the Fibonacci sequence are
0 and 1, and the next number in the sequence is calculated by adding
together the previous two numbers. For example: 0, 1, 1,2, 3,5, 8, 13,

Since the circuit must self generate the sequence, the design must
have at least 2 registers to hold the starting numbers of 0 and 1.

//Define registers and signals
input wire clk, rst, enable;
output wire [31:0] sum;

reg [31:0] cur_num;
reg [31:0] next num;

always @(posedge clk or negedge rst)
if (!rst)
cur_num <= #1 32°b0; //initialize to 0
else if (enable == 1°bl)
cur_num <= #1 next num ;
end

always @(posedge clk or negedge rst)
if (!rst)
next num <=#1 32’bl; //initialize to 1
else if (enable == 1°bl)
next num <=#1 sum; //save the sum
end

//The output is the sum of the two numbers
assign sum = Q1 + Q2 ;

Verilog code for Fibonacci Generation (Ex. /9)

VerilogCode.com Page A2

Below is the equivalent block level diagram that illustrates what
the previous Verilog code will create:

Enable
——
__cur._npgm
[
_next_nym
A
CLK
A
CLK Sum
ol 1
"1 >

Circuit to Generate Fibonacci Series (Fig. /3)

For further preparation, you should try to convert other
mathematical or computer science algorithms from software to a digital
circuit.

Author’s Tip: You should also understand the different tradeoffs and
relationships between power, performance, and area when making
decisions about the architecture of a digital circuit. That is,
understanding the concept of getting better performance (by using
parallel hardware which uses more area) compared to using least
amount of gates (resource sharing) and doing things slower over more
clock cycles.

VerilogCode.com Dage 43

21. Design a circuit to find the maximum value and the
second maximum value from a group of binary
numbers, using the least amount of comparators.

This question is slightly open ended (as some interview questions
are) to see if you ask the right questions to solve the problem. Where are
the group of numbers located? Do we need to fetch them first from
memory with burst accesses? Is throughput and latency a concern?

If not, then all we need is one comparator and two storage registers
(each with a reset value of 0) and then sequentially read and compare the
incoming value against our currently stored values for top two numbers.
We could resource share the comparator between the first and the second
number before servicing the next value.

How could you find the maximum and second largest
value the fastest way?

A faster method would be do all the comparator operations in
parallel using a binary tree, and use pipeline stages for faster bandwidth.

You could compare the first and second number and the winner
would advance. In parallel the third and fourth numbers are compared
and winner advances. Using this approach the maximum number will
continue to the final pipeline stage. In parallel to the winner’s bracket,
you would need to also have a loser’s bracket in order to find the 2nd
largest number, but the same binary tree approach is applied.

Arthur’s Tip: This follow up question really is testing if you
understand the tradeoffs between performance and area (doing
operations in parallel and pipelining) as opposed to doing it serially as
the first question (less area but lowest bandwidth).

VerilogCode.com Page A4

22. Design a circuit that will output 3 signals: second,
hour, and minute. The circuit will receive an
synchronous input signal that occurs every 1 ms.

//Define inputs
input clk, one_ms_pulse;
output reg second, minute, hour;

reg [9:0] ms_counter; //10 bit counter
reg [5:0] second_counter; //6 bit counter

always @(posedge clk or negedge rst)
if (rst)
ms_counter <=#1 10°b0; //initialize to 0
else if (one_ms_pulse == 1’b1) begin
if (ms_counter == 999)
ms_counter <=#1 10°b0; //reset to 0
else
ms_counter <= #1 ms_counter + 1°b1 ;
end
end

always @(posedge clk or negedge rst)
if (!rst)
second counter <= #1 6’b0; //initialize to 0
else if (second == 1’b1) begin
if (second counter == 59)
second_counter <= #1 6’b0; //reset to 0
else
second counter <= #1 second_counter + 1°bl ;
end
end

always @(posedge clk or negedge rst)
if (!rst)
hour counter <= #1 6’b0; //initialize to 0
else if (second == 1’b1) begin
if (minute counter == 59) (cont. on next page)

VerilogCode.com Page A5

minute counter <=#1 6’b0; //reset to 0 (continued...)

else
minute counter <= #1 minute counter + 1°bl ;
end
end

assign second = (ms_counter == 999 && one_ms_pulse) : 1'b1 : 1’b0;
assign minute = (second counter == 59 && second) : 1'b1: 1'b0;
= (minute_counter == 59 && minute) : 1’'b1: 1'bO0;

assign hour

Verilog code to generate one second, minute, and hour (Ex. 20)

23. Given the timing diagram with input signals Clock
and A, write Verilog code to produce output signal B.

Clock t B+ L+ [+ [t L[¢

Write Verilog Code to Produce this Timing Diagram (Fig. /4)

Judging from the output waveform B, when the input A when it is
high the output follows it, but when the input falls the output is delayed by
1 cycle. The following code will produce the above timing diagram:

//flip flop to delay A input
always @(posedge clk or negedge rst)
if (!rst)
A _delay <= #1 1'b0;
else
A _delay <=#1A;
assign B=A | A_delay; //or gate

Verilog Code for Above Timing Diagram (Ex. 21)

VerilogCode.com Page 46

24. Design a 5-TAP FIR Filter and discuss an
application

Digital filters can be used in various application such as audio or
video processing. There are two types of digital filters FIR and IIR.

The FIR circuit does not have any feedback, and it consists of multiply,
add, and accumulate (MAC) function to generate the output. Each flip
flop below represents a tap, and each tap is multiplied by its own
coefficient and then summed together to create the output.

Upscaling (for example by 2), requires shifting in 1 value but then
outputting 2 values. On the first cycle, one set of coefficients are loaded
and then a MAC function is used to create first output value. On the next
cycle, a 2nd set of coefficients are loaded and then MAC function outputs
a 2nd value. The process repeats itself and the pipeline moves forward.
The opposite is true for downscaling, in which the input rate is twice as
fast as the output rate (shift in 2 values, but only output 1 value). Thisis a
simplified explanation but now you an idea of how it is implemented.

N+2 N+1 N N-1 N-2

In

Output

5-TAP Digital FIR filter (Fig. 15)

VerilogCode.com Page A7

VerilogCode.com

‘0

D

N
[Se]

Clock Divider, Clock Gating, and
Reset Questions

VerilogCode.com Dage 49

VerilogCode.com

‘0

D

(]
[\»)

25. Write Verilog code for clock divide by 2 circuit

As a digital design engineer, you should understand how to code
and design any clock divider circuit (both even or odd). Below is
example of simple circuit for divide by 2:

//divide by 2 clock (toggle)
always @(posedge clk or negedge rst) L
if (rst) clk_div_2
clk_div_2 <=#1 1'b0;
else A
clk_div_2 <= #1 ~(clk_div_2); |
clk

Verilog Code for Clock Divide by 2 (Ex. 22)
26. Clock Divide by 3 circuit with 50-50 duty cycle

For generating 50-50 duty cycle clock output for odd dividers, you
will need to use both the rising edge and falling edges of input clock to
produce the final generated output clock. Also, to guarantee glitch-free
logic, the logic that drives the final output clock should guarantee (by
design) that only 1 input signal to the combinatorial logic is changing at a
time, and that input should be driven from a flip flop. Otherwise, you will
create glitchy logic due to race conditions.

always @(posedge clk or negedge rst)
if (Irst)
posedge_cnt <=#1 2'b00;
else if (posedge_cnt == 2’b10)
posedge cnt <=#1 2'b00;
else
posedge cnt <= #1 posedge cnt + 1;
(cont. on next page)

VerilogCode.com Page 51

always @(posedge clk or negedge rst) (continued)
if (Irst)
rise_pulse_reg <= 1'b0;
else if (posedge_cnt == 2’b01)
rise_pulse_reg <=#11'b1;
else
rise_pulse_reg <= #1 1'b0;

always @(negedge clk or negedge rst)
If (!rst)
neg_pulse_reg <=#1 1'b0;
else
neg_pulse_reg <= #1 rise_pulse_reg;

assign clk_output = rise_pulse_reg | neg_pulse_reg; //glitch free

Verilog Code for Clock Divide by 3 with 50-50 Duty Cycle (Ex. 23)

1 2 3 4 5 B 7

Clock e e T A=
posedge_cnt 2'tii[][] zn?m 2'bi[]10 z't:-inn 2'n;:11 2'4010? 2"%00
rise_pulse_reg / H T
neg_pulse_reg \—"
clk_output | | | E E E E E E E E E E E E

Timing Diagram for Clock Divide by 3 (Fig. 16)

Author’s Tip: For clock dividers with an even divider value, create a
counter or FSM to toggle the output clock when the counter is half way.
For odd divider values when duty cycle does not matter, just have one
extra state where the clock is held high. For odd number dividers that
require 50-50 duty cycle, it’s very important to create a glitch free
output.

VerilogCode.com Page 52

27. Show Verilog code for clock divide by N circuit

reg [7:0] divider_value; //software memory mapped register
//(programmed to value minus 1)

always @(posedge clk or negedge rst)
if (!rst)
posedge cnt <= #1 {8{1'b0}};
else if (posedge_cnt == divider_value)
posedge_cnt <= #1 {8{1’b0}}; //reached end, start count over
else
posedge cnt <= #1 posedge_cnt + 1;

always @(posedge clk or negedge rst)
if (!rst)
rise_pulse_reg <= #1 1’b0;
else if (posedge_cnt == divider_value[7:1])
rise_pulse_reg <=#1 1’b1; //set high (half way)
else if (posedge_cnt == divider_value)
rise_pulse_reg <=#1 1'b0; //set low (reached end)

//delay by half cycle (only for odd)
always @(negedge clk or negedge rst)
If (Irst)
neg_pulse_reg <=#1 1'b0;
else if (divider_value[0] == 1’b0) // odd (since value minus 1)
neg pulse_reg <=#1 rise_pulse_reg;

assign clk_output =rise_pulse_reg | neg_pulse_reg;

Example Verilog Code for Generic Clock Divide by N (Ex. 24)

There are waveforms on the next page which show clock divider values
for divide by 3, divide by 4, and divide by 5.

VerilogCode.com Dage 53

Clock

clk_output

posedge_cnt
rise_pulse_reg

neg_pulse_reg

i

b

!

divider value :Divide by 3 (so program to 2'b11);

Timing Diagram for Clock Divide by 3 with (50-50 duty cycle) (Fig. 17)

Clock

divider_value

posedge_cnt

rise_pulse_reg

neg_pulse_reg

clk_output

1

2

: Divide by 4 (so program to 3

31000 X 3h001 Xah

Timing Diagram for Clock Divide by 4 with (50-50 duty cycle) (Fig. 18)

Clock
divider_value
posedge_cnt
rise_pulse_reg
neg_pulse_reg

clk_output

L

4

5

7

a

Divide by

{so program to

b10%

i 36000 ,

Timing Diagram for Clock Divide by 5 with (50-50 duty cycle) (Fig. 19)

otherwise glitches would occur.

Author’s Tip: Remember, it’s important to understand why the odd
clock divider circuits are glitch free. By our design, we are limiting
only 1 input to the OR gate to change (and it is driven from a flop),
You should practice coding and
drawing these timing diagrams on your own since these questions are
popular on interviews.

VerilogCode.com

28. Design a glitch free clock gating cell with enable

Understanding how to design a glitch free clock gate is important.
The below diagram uses a falling edge latch to prevent glitches because
the enable signal is not allowed to transition when the clock input is high:

Latch 4|\
T } Gated
Clock In Clk

Latched Based Clock Gating Circuit (Fig. 20)

Enable —

If the latch was not there, then the enable signal could rise or fall
while the clock is high, causing the gated output clock to glitch or have
duty cycle less than 50%. The circuit works because when the input clock
rises, the negative edge latch closes and doesn’t allow the latch output to
move (which keeps the enable signal to the AND gate stable even if the
input enable signal moves). When the input clock falls, the latch is open
and the enable signal is free to come across (since the input clock is low,
it’s ok now to gate the clock).

always @(clk, enable)
begin
if (Iclk)
latch_q <= enable;
end

assign gated_clk = latch_qg & clk_in;

Example Verilog Code for Glitch Free Clock Gate (Ex. 25)

There is an important timing constraint to understand with the

VerilogCode.com Page 55

falling edge latch approach. The enable signal is usually launched on a
rising clock edge, but the latch uses the falling edge to capture the enable
signal therefore creating a true half cycle path. I’ve seen interview
questions where it was asked why if you increase the clock frequency
setup violations would appear in the clock gate. The answer is because of
the half cycle path that exist between enable and falling edge latch.

29. How to detect a rising edge of a signal if clocks are
off?

If a local clock is currently not available to use, for example, if all
the clocks are gated at the time, then you can use the input signal as the
clock itself and directly connect it to clock pin of a flip flop. This will
generate a level high signal that you can use to request for clocks. After
the local clocks are up and running you still need to clear the flop, and you
need to be careful with the timing and treat the output Q as asynchronous
(therefore synchronize it before using it).

always @(posedge D or negedge clr) clr
if (!clr) J)

Q<=#11'b0; i
else b1 + Q
Q<=#11'b1;
?
D

Asynchronous Edge Detection Circuit (when clocks are off) (Ex. 26)

VerilogCode.com Page 56

30. Design a reset synchronizer circuit which allows
asynchronous reset assertions, and synchronized reset
de-assertions. The circuit receives clock and reset
signal as inputs, and it must output a new reset output.

input rst, clk;
output local_reset;

reg reset_deassert_sync;
reg reset_deassert; //register for synchronous deassertion

always @(posedge clk or negedge rst)

if (Irst) begin
reset_deassert_sync <= # 1'b0;
reset_deassert <=#1'b0;
end
else begin
reset_deassert_sync <= #1 1’b1; //could go metastable
reset_deassert <= #1 reset_deassert_sync; //sync flop
end

assign local_reset = rst & reset_deassert;

Verilog code for Reset synchronization (Ex. 27)

VerilogCode.com Page 57

VerilogCode.com

‘0

D

(9]
[Se]

Clock Domain Crossing
Questions

VerilogCode.com Dage 50

VerilogCode.com

‘0

D

m
(=)

31. What is metastability?

Metastability occurs when a flip flop has a setup or hold time
violation. The output of that flip flop becomes metastable, or enters a
quasi-stable state , and it may settle either high or low. Metastability can
have dangerous consequences if not handled properly in a design. First of
all, all the timing paths inside a circuit should be checked for any setup or
hold violations and be fixed. But in the case of clock domain crossings
(CDC), metastability does occur and therefore special logic is needed for
proper synchronization.

32. Design a circuit to synchronize a signal from a slow
clock domain to a fast clock domain

Below is a common clock domain crossing circuit. If the source
signal is from a slower clock domain, and if the destination clock domain
is at least 2x faster, then you can use a classic 2-stage synchronizer:

Input . Q1 Q2 ,
(slow
clock)
AN AN
Faster
Clk

Classic 2-Stage Synchronizer (Fig. 21)

Why are 2 stages needed? Since the Q1 output can become metastable
(the source and destination clocks are asynchronous), a second stage is
needed to allow the Q1 output to settle (either high or low. The Q2
output will be stable and can be used safely. STA tools will not time the
path from source to Q1, but it is important to time the Q1 path to Q2 path.

VerilogCode.com Page £l

33. How would the previous circuit change if from a
fast domain to a slow domain?

The circuit still requires a 2-stage synchronizer between the fast
domain (source) and the slow domain (destination). However, the fast
domain needs control logic to make sure the signal is held stable until the
slow domain has a chance to synchronize it. ~ This requires a full
handshaking signal from the slow domain back to the fast domain
(through yet another synchronizer) and only then is the fast domain
allowed to clear Q0. Look at the schematic below:

a1 Q2
Control Qo * —
Fast . - T
Clk - Slow
) CLK
Q5 4
i Fal i

Fast
Clk

Clock Domain Crossing using Full Handshaking (Fig. 22)

The control logic above is responsible for setting the QO flip flop
to 1 and holding it steady until it sees the handshake (a rising edge pulse
between Q4 and QS5), which indicates that the Q2 flop has captured the
signal. The QO flop is cleared, but the control logic should prevent the
setting of QO again until it sees a falling edge between Q4 and Q5 (which
indicates that Q2 is low again) and the circuit can safely start over.

VerilogCode.com Page £2

34. How would you synchronize a data bus instead?

If you need to synchronize a multi-bit bus, you should not use a
double flop approach on all of the bits as previously mentioned because
some of the bits will make it in 1 cycle and some will make it across the
domain in 2 cycles. Therefore a better approach is to only synchronize a
1-bit control signal to indicate to the other domain know that the bus is
ready to be synchronized (that is, the bus is stable and will not change).
The control signal should be synchronized and then used as a mux select
to allow the bus to come across (otherwise the old value is held). Below is

diagram of the circuit:

LS

Control Logic to
set ready flag, .
and hold the |ReadyFlag:
bus stable and .
wait for
handshake

Bus_bit[0] .

Bus_bit[N-1]:

Synchronize Bus Across Clock Domains (Full Handshake) (Fig. 23)

VerilogCode.com Dage £3

35. Why are gray coding techniques are used for Clock
Domain Crossings?

Gray coding by definition is a coding scheme where only 1 bit
changes between states. Since only 1 bit is changing, then it is ok to
synchronize a bus from one domain to another domain using just the
normal classic synchronizer scheme. As you remember the problem with
classic synchronization (double flop) across a bus is that some of the bits
may transition before others (some flops would meet setup/hold condition)
while others may not. But in the case where only 1 bit is changing, you
don’t have this issue.

One example of using gray coding with clock domain crossings is
when designing an asynchronous FIFO. The fifo write address pointer is
on one clock domain and the FIFO read address pointer is on the other
domain. One technique is to use a gray coding scheme for each FIFO
address pointer, and synchronize each of the pointers to the other domain
and then generating the necessary control logic could be added to decide if
FIFO has valid data, is full, or is empty.

VerilogCode.com Page 64

Power Related Questions

VerilogCode.com Page £5

VerilogCode.com

‘0

D

m
(9)]

36. Describe the two components that make up power

Low Power RTL design techniques are very important in today’s
digital logic designs because battery life is such an important role in
mobile consumer electronics and in the future with wearables. The two
components of power in digital circuits are static and dynamic.

37. Describe static power and how to reduce it in RTL

Static power, also known as leakage power, is directly related to
the size or area of your design. The area is directly related to the number
of logical gates (which are made up from transistors) created from your
RTL code. When power is applied to the transistor, the transistors
naturally leak current due to the manufacturing defects during the silicon
process. In order to reduce static power, you can either minimize the
number of gates in your design by resource sharing techniques (RTL
coding), or by actually turning off the power to that logic.

Usually large sections of transistors are grouped together in their
own power domain and a power controller is used to request power to be
turned off or on depending if that logic will be needed. = When sections
are logic are powered down it is important that isolation cells are placed
on all the outputs of the powered off circuits to ensure that a known value
is driven after the gates are turned off. Isolation cells are special cells that
could be instantiated in the RTL code (or inserted afterwards by a back
end physical design team). It is important for the designer to make sure
the isolation value that is driven (either iso high or iso lo cell) to inactive
functional value (such as the reset value of the flop).

When power is turned off to the digital logic gates and registers,
the values are lost. However, it may be desired for certain important
control registers that you want to keep its value when power is turned off.
There are special retention flip flops that can be instantiated in the RTL (if
your library supports it) that will retain its value.

VerilogCode.com Page £7

38. Describe dynamic power

Dynamic power is the power that is lost when a signal transitions
from a logic high-to-low state or from a low-to-high state. This is due to
the fact that in today’s silicon circuits which use CMOS transistors, there
is a current spike that occurs when the transistors are switching from an on
to off state and there is a path (from VDD to GND). This is a direct result
of the amount of transitioning and toggling of the signals inside your code.

39. Describe low power techniques with RTL code

Therefore, to lower the dynamic power in your digital design, your
RTL code should avoid unnecessary toggling of signals. This can easily
be accomplished with use of an enable signal. Your datapaths should
always use enable signals when possible. Another example of using an
enable is with counters. The below code that makes sure the counter
doesn’t toggle unless it’s time to start and also it has a stop condition:

if (!rst)
counter <= #1 {8{1'b0}};

else if (start_counter == 1’b1)
counter <= #1 {8{1'b0}};

else if (counter < 8’b00101111)
counter <= #1 counter + 1;

Start/Stop Conditions for Counters (Ex. 28)

By using enable signal, the flip flops will not toggle unnecessarily.
Also, synthesis tools understand this and will gate the clock to the register
for you automatically. These are considered leaf level clock gates.

The RTL design could also instantiate it’s own clock gating cells at
a middle level (above the leaf level). This can be useful when the
designer knows that a group of logic will not be used unless it is enabled
(for example perhaps a feature that software will enable during run time).

VerilogCode.com Dage £8

The RTL code would instantiate a clock gating cell (it is important that
clocks are gated correctly and do not glitch. Refer to interview question
about how to code a clock gating circuit). Be aware that you should not
add a clock gate for a small number of flops (because adding more logic
will increase the static power).

When trying to lower the dynamic power as much as possible,
another method is to only toggle 1 bit of your FSMs as it transitions
between states. This can be accomplished with gray coding for the state
transitions. Gray coding can also be used in the read or write address
busses that are connect internally to any FIFOs (or SRAMs) or address
decoding logic.

Another example of less toggling is to use a databus inversion or
databus encoding/decoding techniques. In some instances, if you have a
wide databuses in your design and you want to reduce the amount of
individual bit toggling, instead of driving each bit to its correct high or low
value, it may make sense to instead drive a sideband signal called
“inversion” that will let the receiver logic know that the databus has been
inverted. This approach is used if the number of bits which are different
between the current value and the next value of the databus are more than
N/2 (where N is the width of the databus). Another technique which does
not require the sideband signals is to encode the databus and decode it on
the receiver side. There are plenty of white papers on this subject if you
search on low power verilog databus encoding schemes.

As mentioned with static power reduction, if your design can reuse
logic elements with resource sharing then it will also lower the dynamic
power since less toggling through the gates.

Author’s Tip: this was a high level and introductory discussion on
dynamic and static power. The subject is much deeper and if you are
interviewing for low power design you should dive deeper into it.

VerilogCode.com Dage £9

VerilogCode.com

‘0

D

SN
(=}

Digital Logic Design
Interview Questions

VerilogCode.com Page 71

VerilogCode.com

40. What is definition of setup and hold time?

The setup time for a flip flop is the minimal amount of time its
input signal must be arrive and be stable (not toggle) before its clock edge.
Hold time is the minimal time after a clock rises that data must remain
stable and not change (hold steady).

The most common reason setup times are violated is because there
is too much logic between the launch flop and capture flop for the desired
clock frequency to be met. The capture flip flop would have a setup time
violation if the delay from the launch flop (clk->q + wire delay +
propagation delay through combo logic) was greater than the clock period.

ok]

Example of Sequential Circuit (Fig. 24)

There are multiple ways to fix setup violations. If it is early
enough in the design cycle you could rewrite the RTL code (micro
architect it in a different way). Or you could add a pipeline stage in the
RTL path (break the path in the middle somewhere by adding another flop
stage) and use an enable signal at the destination capture flop.
Additionally the physical design team could resize the cells to have greater
drive strength, or move the physical location of the cells closer to each
other. And last resort, you could always run the clocks slower.

A hold violation is the opposite extreme of the above example. If there
was no logic delay between the launch and capture flops, the signal may
arrive too soon and cause a hold violation. To fix a hold violation, the
physical design team would add delay in the paths (for example buffers).

VerilogCode.com Page 73

41. Venn Diagrams and Boolean Logic

When I first started interviewing, I was hoping to rely on my
practical work experience to get me through the job interview questions. |
was quickly proven wrong. In fact, [was surprised on how ‘college’ like
the questions were. For example, in practice we write RTL code (and
don’t use Karnaugh maps anymore).

On one interview I was introduced to a senior design engineer. He
asked me if [was a digital designer, and [nodded my head yes. He
quickly followed up “then you shouldn’t have any problem solving a
boolean logic and Venn diagram question”. Huh?

I thought to myself, “Seriously? I’'ve been designing digital
circuits for eighteen years and never once did I need to draw a Venn
Diagram or optimize boolean equations!” That’s what the EDA tools are
for.

Hoping he didn’t sense any discomfort or hesitation on my part, |
quickly said that I haven’t done this since my digital logic classes in
college. He seemingly didn’t care, and proceeded to draw on the
whiteboard. He turned to me and asked:

“What is the boolean equation for this shaded region below?”

Venn Diagram (Fig. 25)

VerilogCode.com Page 24

I studied the diagram for couple of seconds, and mentally I could
see it was made up of three intersections: AB || ABC || AC. Inoticed that
the middle cross section of ABC was redundant and was already covered
by the other terms, so without thinking any longer I blurted out “AB or'd
with AC”, and I wrote on the board: AB || AC.

I also verbally pointed out that the middle cross section of (ABC)
was redundant and already covered in my equation.

He nodded, and then asked me if I could simplify my equation
even further. I looked at my equation again, and quickly answered, “yes,
you can factor out the A”, and then I wrote:

AB|AC =A (B| C)

He then asked if I could draw the equivalent logic gates so I drew:

EDﬁ—}

A [

Logic Gates for A&(B|C) (Fig. 26)

Again, he gave a quick nod of the head for agreement. Then he
asked if I could draw the transistor cell equivalent. I turned my head
slowly and looked at him as if to ask “are you for real?”” He responded
that he just wanted to see how far I could go. I responded that once upon
a time I could draw a CMOS inverter, and given some time I could
probably figure out the other gates.

Author’s Tip: In reality, I should have been prepared for this question
if I really wanted to impress him. On the next few pages, I’ve included
the CMOS transistor level equivalent for the common digital logic
gates. You should memorize all of these circuits and be prepared.

VerilogCode.com Rage A5

42. Transistor Level Equivalent of Digital Logic Gates

Inverter Gate
Logic Symbol Transistor Level (CMOS)
A o o
Truth Table
A Y A :l Y
0 1
1 0
]
GND

Inverter Gate, Truth Table, and transistor-level circuit (7able 2)

NAND Gate

Logic Symbol Transistor Level (CMOS)

A Y
B VDD VDD
Truth Table A {{ B _Ci

AlB| Y Y

0j]0] 1 A‘\

01 1 :\

]
GND

NAND Gate, Truth Table, and transistor-level circuit (7able 3)

VerilogCode.com Page 76

NOR Gate

Logic Symbol
A
B
Truth Table
A|B Y
0|0 1
0|1 0
1|10 0
111 0

Transistor Level (CMOS)

VDD
_—

A

11\~‘ E.~|
B]
GND GND

NOR Gate, Truth Table, and transistor-level circuit (7able 4)

AND Gate (created from a Nand and Inverter)

Logic Symbol Transistor Level (CMOS)
A —
VDD VDD VDD
B —_—
el
Truth Table Y
A|B Y
A
0|0 0
GND
0|1 0 B
110 0
GND
1(1 1
AND Gate, Truth Table, and transistor-level circuit (7able 5)
VerilogCode.com Page 77

OR Gate (created from a Nor and Inverter)

Logic Symbol
A
B
Truth Table
A|B| Y
o|jo| o
0|1 1
110 1
111 1

Transistor Level (CMOS)

VDD

s

VDD

-4 ﬁ
AL

OR Gate, Truth Table, and transistor-level circuit (7able 6)

VerilogCode.com

43. Cross section of a CMOS transistor

When I first started interviewing, I was not prepared for many of
the academic questions since I had been out of school for many years. I
always introduced myself as a front end RTL design engineer. Yet, I was
still expected to know some fundamental concepts.

“So you would have a problem if I asked you to draw a
cross-section of a CMOS transistor?”, asked one interviewer. I vaguely
remembered details from my Semiconductor courses in college, but I
restated that my primarily focus was writing Verilog code. This was
obviously not the right answer! For reference, below is the cross-section
of a CMOS transistor. I suggest simply memorizing it.

NMOS PMOS
. i S =
G G

B s o s D B

T] P
e+) p+_J | p+ J

rrwell
p-substrate

Cross-section of CMOS Transistor (Fig. 27)
Image from Wikipedia.org

Yous should also be familiar with process nodes and know in
which technology nodes your designs were in. Refer to table below:

Year and Process Year and Process Year and Process

1989 800 nm 2001 130 nm 2012 22 nm
1994 600 nm 2004 90 nm 2014 14 nm
1995 350 nm 2006 65 nm 2016 10 nm
1997 250 nm 2008 45 nm 2018 7 nm
1999 180 nm 2010 32 nm 2020 5nm

Semiconductor Manufacturing Processing Nodes (7able 7)

VerilogCode.com Page 78

44. FSMs, Karnaugh Maps and Gray Code

I’ve mentioned earlier in the book that I’ve been writing RTL code
for almost 20 years, and not once did I need to draw a Karnaugh map. So
I was a bit surprised with some of the interview questions that directly
asked me to do so, and I was not prepared as I should have been.

I knew beforehand that I should study how to design clock
dividers. Before the scheduled interview, I prepared to answer how to
design any clock div N circuit with a 50% duty cycle. However, I wasn’t
prepared for any Karnaugh map questions!

The interviewer asked me to “design a clock circuit that divides by
3 using a FSM (finite state machine)”. He also stated that there was not a
requirement for 50% duty cycle.

This seemed simple enough and I said I would create a FSM with 3
states. As I drew the diagram on the whiteboard, he asked me to assign
states values so I labeled them with binary values of “00”, 017, and “10”
respectively:

3 State FSM for Clock Divider (Fig. 28)

He nodded in agreement, but then asked me to change the state
values that I assigned to instead use gray coding. I understood that Gray
coding has rules and that only 1 bit could change between each state
transition. So I relabeled the states just as he asked, with the following
values: 00,01, 11. As soon as I assigned the last state, I realized there

VerilogCode.com Page 20

would be a problem going from the last state back to the first state since
two bits changed, violating Gray code rules.

Gray coding (with violation from state 11 to state 00) (Fig. 29)

This is where I got stuck (and, then nervousness set it). After
some time, he asked me to draw a Karnaugh map for the state values. At
this point of the interview, I really felt I was following a rehearsed script,
like he had asked this question hundreds of times before, and he just
wanted to see how my thought process would work as we worked through
this together. Below is the Karnaugh map I drew for my FSM:

0 1
0 High = | ow
|
v
1 Low

2-bit FSM (illegal gray code transition) (Fig. 30)

Clearly from the low state 11 it is illegal to go back to high state
00. From the diagram above, there is an empty slot (state 10) which is
available which could be used to generate a high output. If you were to
use this unused stated, then the FSM could reverse and go back to two
previous low states, but that would require extra control logic (flags) to be

VerilogCode.com Page 21

set. It did not occur to me at the time to suggest that solution.

Also, he reminded me, that Karnaugh maps squares are structurally
already gray coded, that is, each adjacent square in a Karnaugh map
(above or below, or left or right) is a valid gray code transition. This is a
very important fact to remember that I had forgotten my college classes.

After some discussion with the interviewer, | finally deduced that I
could use a 3-bit state value for the FSM, and he asked me to draw a new
Karnaugh map to represent the new states. I decided to use the
following states and start in the upper left corner: 000 (high), 001 (low),
011 (low), then 111 (high), 101 (low), and 100 (low):

00 01 11 10
0 High —» Low —» Low
f |
\
1 Low <« Low <« High

Six state FSM with correct gray code values (Fig. 3/)

The key to solving this question is remembering that when using
Karnaugh maps you can move freely around adjacent state spaces with
only a 1-bit change in value. By moving around the states, you can piece
together the answer. In fact, any six states will work as long as you
circle back to the beginning. After this interview, I decided to dig further
into Gray coding since I recognized a trend. Gray coding started to
become a recurring theme in my interviews for low power digital design.

Gray coding techniques are discussed in other questions in this
book with some possible use-case scenarios.

VerilogCode.com Page 822

45. Half Adder using XOR gates and AND and OR gates

A basic question and concept that you should understand is how to
design digital logic for adders. Below is the truth table, K-map, and logic
implementation:

A B Result | Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Truth Table for an Adder (Table 8)

Karnaugh Map for the Result and Carry bits:

Result B Carry
N 0 1 AN 0 1
0 0 1 0 0 0
1 1 0 1 0 1
Result= AB + BA Carry = A AND B
=AXORB

A D Result
B —

Half Adder (Fig. 32)

VerilogCode.com Dage 232

By placing two half-adders together you can create a full adder circuit:

L7 > pesl
—

F Cout

Cin

Full Adder Circuit (Fig. 33)

Placing multiple 1-bit full adders together and you can get a multibit
adder. Below is a 4-bit adder:

Al B3 A2 B2 Al 8O M) BO Cin
I Y g O A Y O B B
A B Cin B B Cin A H Cin A K Cin
Full Adder Full Adder Full Adder Full Adder
1:|.;||_rt Result Cout Result Cort Besult
Cout R3 R2 Rl RO

Multibit Adder (Fig. 34)

Author’s Tip: It is important to understand how these basic building
blocks are used together just in case you are asked. It is too easy as a
front end designer just to type in verilog: R = A + B; Now you will
have understanding what’s happening in the synthesis tool.

VerilogCode.com Page 24

46. Creating digital logic gates using 2:1 mux

You’ll be surprised to know that these following questions appear
more often than not. I consider than tricks, and they are no way practical
atall. However, it does make you understand the truth table of the
common gates and also are logical once you undersatnd you can use VDD
and GND when you construct the circuit. You need to create all the logic
gates using using a 2-input mux. [suggest you just memorize this.

For an inverter, you should

125 connect the A input to the select
line (A=S)
A Y
0 1
1 0

Inverter Implemented with 2:1 mux (7able 9)

For an AND gate, you connect
the A input to the select line (A=S)

A [(B]| Y
01|60 0
0 1 0
1 0 0
1 1 1

AND Gate Implemented with 2:1 mux (7able 10)

VerilogCode.com Page 85

For an OR gate, you connect
the A input to the select line (A=S)

VDD

T A(S)|B| Y
0 [0] 0
0 [1] 1
1 |0] 1
1 | 1] 1

OR Gate Implemented with 2:1 mux (7able 11)

To create a NAND or NOR gate, you could place an inverter on
the output of and AND or OR gate. Another method is presented below
in which you could invert the A or B input and then use the 2:1 mux
implementation below:

For an NAND gate, you connect
the B input to the select line
(B=S), and then use A’ (not A)

A [B(S)| Y
hr

— 0 0 1

’“E 0 1 1

1 0 1

1 1 0

NAND Gate Implemented with 2:1 mux and inverter (7able 12)

VerilogCode.com Page 26

For an NOR gate, you connect
the A input to the select line
(A=S), and then use B’ (not B)

A(S)|B | Y
0o o] 1
0o |1] 0
1 (0] 0
1 (1] o0

NOR Gate Implemented with 2:1 mux and inverter (7able 13)

Along with an inverter, you could also create an XOR gate with 2:1 mux:

For an XOR gate, you connect
the A input to the select line (A=S)

A(S) B | Y
0 0] 0
0 [1] 1
1 o] 1
1 [1] o0

XOR Gate Implemented with 2:1 mux and inverter (7Table 14)

And for completeness, the XNOR gate with 2:1 mux and inverter is
included here:

VerilogCode.com Page 87

For an XNOR gate, you connect
the B input to the select line (B=S)

A |BS)| Y
0] o 1
0| 1 0
110] o
1|1 1

XNOR Gate Implemented with 2:1 mux and inverter (7able 15)

47. How do you use and XOR gate as a controlled
inverter?

When control is 0, the A input
passes through. When control is
1, the A input is inverted.

Control A Y

A Y
=] | ERnE
Control

0 1 1
0 0 1
1 1 0

XOR Gate Used as Controlled Inverter (7able 16)

VerilogCode.com Dage 28

48. Design an inverter, and, or, and xor gate using only

nand gates
I’m not sure why these questions are asked, since they are not
practical. But, here are some common solutions to creating other gates

A —E}Y

Inverter (Fig. 35)

=) ==l =

AND Gate Implemented with NAND Gates (Fig. 36)

with just nand gates.

AL

D
o
OR Gate Implemented with NAND Gates (Fig. 37)

"T— L1 ~.:
="

XOR Gate Implemented with NAND Gates (Fig. 38)

VerilogCode.com Dage 29

49. Create a 4:1 Mux using 2:1 muxes

30
51

4:1 Mux created with 2:1 muxes (Fig. 39)

Above is the basic circuit, but if you dig in further and look at the logic
gates, here is a 4:1 mux with purely combinatorial logic:

A

W

=

D -

51 —4|>‘°*

52

1
(
3

.o

Example 4:1 mux implemented with combinational logic (Fig. 40)

VerilogCode.com Page

9

{

50. Frequency, Period, and Propagation Delay

Assuming propagation delay through each gate below is 1 ns, what is the
maximum frequency this circuit can run?

A R

-——\l | ;

-B._l___' ! ./) VI Sum
I >

Carry In i

= — 1

—D)

What is maximum frequency this circuit can run? (Fig. 41)

1)L T, Carry Out

Frequency =1/ T. The maximum frequency is directly related to
worst total path in the circuit. In this example, the worst path is a 3 gate
delays starting from point A through the XOR gate, then AND gate, then
the OR gate for a total path delay of 3 ns. Therefore, the safest (fastest)
frequency is 333.33 megahertz (1/ 3 ns).

Author’s Tip: As a reminder, there are 4 possible timing groups in a
given module: input port to output port, input ports to internal flop,
internal flop to internal flop, and internal flop to output port.

Remember that in a real silicon circuit, there are also wire delays
associated with the signals. In addition, each of the inputs will have
some an input delay associated with them (even if they are driven from
flops there is a clock to Q delay before the signal becomes available and
routing). For output ports, keep in mind there is a capture flop on the
other end so you must meet the setup time requirement of the capture
flop.

VerilogCode.com Page S1

51. Convert decimal value 13 to binary, hex, and octal

There is nothing tricky about this problem. It is straightforward but
some people have issues for the conversion to octal (if they haven’t done it in
a long time). Given the decimal value 13, the binary equivalent is 1101, the
hex value is D, and the octal value is 15.

VerilogCode.com Pag

Logical Problem Questions

VerilogCode.com Dage 92

VerilogCode.com

‘0

D

Neo)
N

When I’m traveling for a job interview and have some spare time
to pass, I like to entertain myself by working logical puzzles. Logic
puzzles can help stimulate your brain.

They may not seem related to digital design at first, but they do
require logical thinking to solve them (which is the basis of engineering).
Whether these types of problems detect if a candidate would be a good
employee or not is arguable. I think that it is better to be prepared in case
these types of questions are asked. Some of my colleagues have been
asked these types of questions or variations of them.

The questions listed in this section were found on the internet just
by searching for logic puzzles. I selected a few that do not have trick
answers or tricky wording. I’ve only included questions that have
logical solutions. Also, Idid not include any intensive math related
questions or any that require advanced mathematical calculations.
Instead, these questions involve straightforward logical thinking and
problem solving skills.

52. Four Gallons of Water

Using just a 5 gallon bucket and a 3 gallon bucket, how can you
measure exactly four gallons of water in the 5 gallon bucket? (Assume
that you have an unlimited supply of water and that there are no
measurement markings of any kind on the buckets.)

53. The Path to Freedom

You are a prisoner in a cold dungeon. After a long search you
discover three doors. Behind only one of the doors lies the path to
freedom. Behind the other two doors, however, is not the path to freedom
(you can assume some violent death ensues...)

VerilogCode.com Page 85

There are different inscriptions on each door, labeled as followed:

Door 1 Door 2 Door 3
This door leads to This does does not The middle door does
freedom lead to freedom not lead to freedom

Path to Freedom Doors (Table 17)
Given the fact that at least one of the three statements on the three
doors is true and at least one of them is false, which door would lead you
to freedom?

54. The Three Light Switches

There are three light switches in your basement. All of them are
currently in the off position. Each switch controls its own lamp on the
floor above. You need to find out which light switch controls which lamp.
You are not allowed to break walls or inspect wiring of circuits, etc.

You must start in the basement where the three light switches are
location. You may turn on or off the switches any number of times, but
you may only go upstairs one time to inspect the lamps (and at that time
you must make your decision). How can you determine which switch
controls each lamp with only one trip upstairs? Hint: you will need to
think outside the box for this one.

55. Multiply Question

. What are the values for A,B,C,and D?
ABCD
(Eeach variable represents a different single digit value
x 9 between 0 and 9)
DCBA

Multiply Question (7able 18)

VerilogCode.com Page 86

56. Einstein's Riddle

There are 5 houses in 5 different colors in a row. In each house
lives a person with a different nationality. The 5 owners drink a certain
type of beverage, smoke a certain brand of cigar, and keep a certain pet.
No owners have the same pet, smoke the same brand of cigar, or drink the
same beverage. Other facts:

The Brit lives in the red house.

The Swede keeps dogs as pets.

The Dane drinks tea.

The green house is on the immediate left of the white house.
The green house's owner drinks coffee.

The owner who smokes Pall Mall rears birds.

The owner of the yellow house smokes Dunhill.

The owner living in the center house drinks milk.

A S AN S e

The Norwegian lives in the first house.

—
)

. The owner who smokes Blends lives next to the one who keeps
cats.

—
—

. The owner who keeps the horse lives next to the one who smokes
Dunhill.

12. The owner who smokes Bluemasters drinks beer.

13. The German smokes Prince.

14. The Norwegian lives next to the blue house.

15. The owner who smokes Blends lives next to the one who drinks

water.

Question: Who owns the fish?

VerilogCode.com Dage 07

VerilogCode.com

‘0

D

Ne)
(3]

LOGICAL PROBLEMS (Answers)

VerilogCode.com Dage 99

VerilogCode.com

52. Four Gallons of Water
ANSWER:

1. Fill up the 5-gallon bucket.

2. Pour the contents of this into the 3-gallon bucket. You are now left
with two gallons of water in the 5-gallon bucket.

3. Dump out the water in the 3-gallon bucket.

4. Pour the two gallons of water that are in the 5-gallon bucket into
the 3-gallon bucket.

5. Fill up the 5-gallon bucket up again.

6. Top off the 3-gallon bucket with water from the 5-gallon bucket
leaving you with 4 gallons of water in the 5-gallon bucket.

ALTERNATE ANSWER:

Fill the 3-gallon bucket.

Pour the 3 gallons of water into the 5-gallon bucket

Fill the 3-gallon bucket again.

Fill up the 5-gallon bucket with the 3-gallon bucket, leaving you
with 1 gallon left in the 3-gallon bucket.

Empty out the 5-gallon bucket.

Pour the remaining 1 gallon of water from the 3-gallon bucket into
the 5-gallon bucket.

7. Fill the 3-gallon bucket.

8. Pour the 3 gallons of water from the 3-gallon bucket into the
5-gallon bucket leaving you with 4 gallons of water in the 5-gallon
bucket.

L=

AN

53. The Path to Freedom:
ANSWER:

1. Assume Freedom is behind the first door. All three doors would
then have true statements which we know is not possible since one
of them must be false.

2. Assume Freedom is behind the second door. All three doors would
then have false statements which we know is not possible since

VerilogCode.com Dage 101

one of them must be true.

3. Freedom is therefore behind the third door. The blue door and the
green door have true statements and the red door has a false
statement.

54. The Three Light Switches

ANSWER: Turn Switch 1 on and leave it on for a little while...
about five minutes or more... and then turn it off. Turn Switch 2 on and go
upstairs to inspect the lamps.

e The lamp with the bulb that is off but still warm is controlled by
Switch 1.
The lamp that is currently on is controlled by Switch 2.
The lamp that is off and cold is controlled by Switch 3.

55. The Multiply Question
ANSWER: 1089 *9=9801 A=1, B=0, C=8, D=9

56 Einstein’s Riddle
ANSWER

The German sits in his Green House, smoking his Prince cigars, drinking
coffee, and watching his FISH.

The rest go like this-

Ist House: Yellow, Norwegian, Water, Cats, Dunbhill
2nd House: Blue, Dane, Tea, Horse, Blends

3rd House: Red, Brit, Milk, Birds, Pall Malls

4th House: Green, German, Coffee, FISH, Prince
5th House: White, Swede, Beer, Dogs, Bluemasters

VerilogCode.com Page 102

Further reading and studying on your own...

This book attempts to focus on the front end RTL and Verilog
interview questions. However, there are so many other topics which were
not covered. You should continue to research and study on your own for
these topics, or visit the website for information: www.VerilogCode.com

Verification
e What are the differences between SOC level and IP level testing
e Differences between writing CPU compiled tests in C or assembly
compared to unit level testing using constrained random tests
e Defining test plans and functional testing requirements
o writing functional cross coverage buckets
e Measuring code coverage
o line, branch, condition, and toggle coverage

DFT (Design For Test)

o Understand scan flops and basics about how scan chains work

e Understand test modes for clock gating cells, latches (make them
transparent), and memory (drive inputs to the outputs)

e Understand memory BIST or PBIST testing

Physical Design Questions

As a front end RTL designer, you may not be familiar with STA or
the physical design flow. However, you should be aware of what
physical designers can do, and what methods and tools that they use.
Including:

e Give an example of what is included in a synthesis constraint file
e If STA results are clean, but the netlist and sdf files are showing
Xs in gate level simulations, what could be the possible causes?
© incorrect constraint files
o the physical placement (location) of cells

VerilogCode.com Page 103

o

clock domain crossings

e Understand some ways physical design can fix setup and hold

violations, by:

o

o O O O

Replication of logic

Resizing cells

Moving logic from right to left side

Breaking paths (pipeline techniques)

Under (PVT) relationships: Power, Voltage and
Temperature

e Understand Dynamic Frequency Voltage Scaling

VerilogCode.com Page

Personal Interview Notes and Questions

Use these next pages for your own personal interview notes and
experiences. As soon as you finish an interview, you should write down
the questions immediately before you forget them. These pages can be
used as your personal journal that you can review before each interview.

From my experience, if you immediately write down the questions
and then review all of them before your next interview then you become
more and more comfortable answer questions.. And chances are you may
hear a related question on your next interview. It also builds up your
confidence and library of information.

VerilogCode.com Page 105

Personal Interview Notes and Questions

VerilogCode.com

Personal Interview Notes and Questions

VerilogCode.com

Personal Interview Notes and Questions

VerilogCode.com

Personal Interview Notes and Questions

VerilogCode.com

Rage 109

Personal Interview Notes and Questions

VerilogCode.com

Personal Interview Notes and Questions

VerilogCode.com

Personal Interview Notes and Questions

VerilogCode.com

Personal Interview Notes and Questions

VerilogCode.com

Personal Interview Notes and Questions

VerilogCode.com

Personal Interview Notes and Questions

VerilogCode.com

Personal Interview Notes and Questions

VerilogCode.com

Personal Interview Notes and Questions

VerilogCode.com

Personal Interview Notes and Questions

VerilogCode.com

Credits and Sources

Websites Sources:

https://en.wikipedia.org/wiki/CMOS
http://www.design-reuse.com/articles/20775/hdl-design-low-power.html
http://www.asic-world.com
http://6004.mit.edu/Fall14/tutprobs/fsm.html

White Papers:

OSR Journal of VLS| and Signal Processing (IOSR-JVSP). ISSN: 2319 — 4200,
ISBN No. : 2319 — 4197 Volume 1, Issue 3 (Nov. - Dec. 2012), PP 32-37
Asynchronous FIFO Design with Gray code Pointer for High Speed AMBA AHB
Compliant Memory controller G.Ramesh, V.Shivaraj Kumar, K.Jeevan Reddy

Clock Dividers Made Easy by Mohit Arora. www.mikrocontroller.net
People

| would like to thank and acknowledge the following people who helped me
during my professional career, and also helped me to prepare for my own job
interviewing experience and preparation: Atif Hussain, Rajitha Padakanti, Bob
Mizell, and William Wallace

Places

| would like to thank the Red Horn Coffee House and Brewing Co. in Cedar
Park, TX for providing Wifi internet access. | was able to finish this book
while enjoying some of the best coffee and craft beers.

VerilogCode.com Page 119

